
HAVER & BOECKER

DIE DRAHTWEBER

MATERIALS FOR WOVEN WIRE CLOTH

MATERIALS FOR WOVEN WIRE CLOTH.

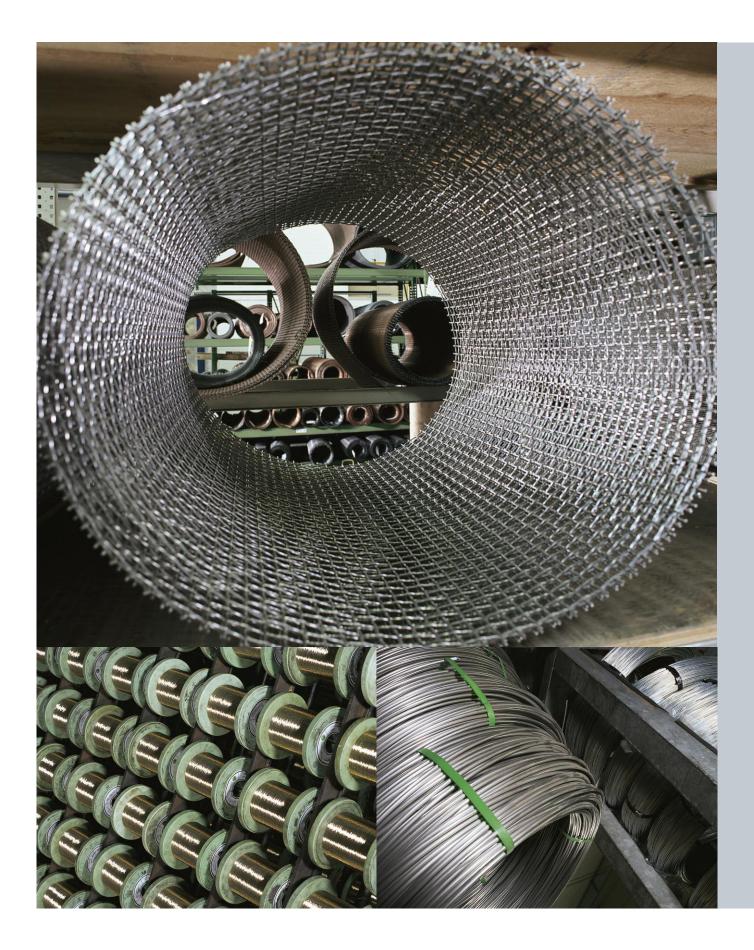
Technical woven wire cloth manufactured by Haver & Boecker is used for screening and filtration in almost every industrial sector: chemical, plastic, automobile, aviation, aerospace, electronics, industrial screening (mining and quarrying), test sieving, food processing industry and a host of other applications. In addition to its technical properties, Haver & Boecker woven wire cloth has a high aesthetic appeal. Architects and designers started combining the two in the early 1990s. The variety of wire mesh types offered by Haver & Boecker is as extensive as the range of applications. From 16 mm diameter wire, to fine wire down to only 0.015 mm diameter, we weave all types of material.

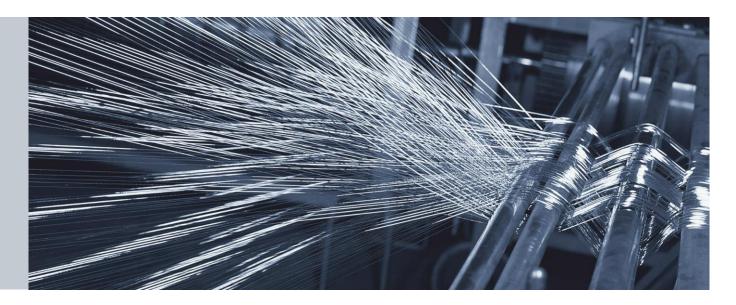
- Steel: blank, galvanized, tinned, lacquered, plastic coated
- Stainless steel: chrome steel, chrome-nickel steel, chromenickel-molybdenum steel, heat resisting steel

- Non-ferrous metals: aluminium, nickel, MONEL-Metal, phosphor bronze, brass, copper
- Special materials: titanium, hastelloy, silver, platinum und many others.

The selection of material, quality and processing are of great importance for the properties of the woven wire cloth product. Certain requirements can be fulfilled only by using certain materials. Here the costs for various materials can vary widely. Knowledge about which materials are best suited for particular applications and which processes may be used are especially important for assuring the fulfilment of the requirements for function, stability, safety, and economy. On the following pages we present the individual materials. A table shows the chemical composition, density, resistance to air, sea water, lye, and acid, as well as tensile strength, heat conducting capacity, and electrical resistance.

Using certified measurement and test procedures, proof is provided that the wire cloth from Haver & Boecker fulfils the respective requirements.


Moreover, we have also developed our own processes for quality assurance. During the reception of wire materials, wire cloth production and before the delivery our laboratory conducts special analyses along with the classic material and quality checks.


Our certified quality management system as to DIN EN ISO 9001:2008 provides additional assurance. In connection with differentiated quality assurance of incoming wire material until finished product as to DIN ISO 9044 and DIN ISO 9045, first class woven wire cloth quality is guaranteed.

Haver & Boecker began producing wire cloth in Hohenlimburg, Germany, in 1887. Today, we are one of the world's leading wire weaving companies with a global network of branches and manufacturing facilities.

Our work is based upon experience, continuous research and development of our products and manufacturing processes, along with the knowledge and ability of our staff. This combination of tradition and innovation allows us to meet and exceed the high expectations of our customers.

Steel

Plain, low carbon steel (iron) with little resistance to corrosion under "normal" environmental conditions. Haver & Boecker therefore offers woven wire cloth made from plain steel in galvanized, tinned or lacquered finish.

HAVER NIA-Steel

HAVER NIA-Steel is a spring steel with high carbon content and manganese elements. It is extremely resistant to abrasion and vibration and - at the same time - it is elastic. Therefore it is especially suitable for industrial screens.

Martensitic and Precipitationhardening Stainless Steels

The materials named in the table show a feritic microstructure and are magnetic. Using special heat treatment they can be hardened in order to achieve a higher wear resistance and stability. The chromium content of the alloy results in good corrosion resistance to "normal" environment conditions.

Austenitic Stainless Steels

Stainless Steel is the most widely used material for our woven wire, covering most applications. These alloys show very good resistance to corrosion under atmospheric conditions. Austenitic stainless steels are not resistant to high-temperatureoxidation. For high-temperature applications, when some discoloration of the surface can appear, i.e. over 450°C (842°F), heat resisting steels should preferably be used. In cases where comparable corrosion properties are required with a higher strength, we recommend the material No. 1.4310. If the material is to be welded, we recommend austenitic stainless steels with a low carbon content or the material No. 1.4571. stabilized with titanium. Both show a sufficient resistance to intercrystaline corrosion. The material group 1.44.. contains molybdenum and has a higher resistance to chlorous media than the material group 1.43...

Austenitic-Ferritic Steels

So-called compound steels with very good corrosion resistance to seawater. The alloy constituent molybdenum makes them resistant against pitting or selective corrosion. Compared to the austenitic alloys they have a high tensile strength, making them particularly suitable for applications of the chemical or petrochemical industry.

Heat Resisting Steel and Heat Conducting Alloys

These steels are resistant to temperatures of up to 1,300°C (2,375°F) in air and show a good resistance to possible heat waste. The coat of aluminium-oxide that forms on the wire surface makes them especially suitable for applications in air. The use of ferritic steels in aggressive or sulphurous surroundings is not recommended. For such applications austenitic heat resisting steels should be used as they show a better resistance to high-temperaturecorrosion.

Copper and Copper based Alloys

Copper displays good conducting properties for heat and electricity. It is highly resistant in the atmosphere as well as in sea-water. The corrosion resistance to cyanides, halogenides and ammonia however is poor. Copper-tin alloys (Phosphor Bronze) are largely wear and tear resistant and show good emergency running properties. This property is important in bearings.

Copper-zinc alloys (Brass) are particularly suitable for sieving and filtration purposes. It is important that the material does not come into contact with ammonia (NH₃), because it may be destroyed by crevice corrosion.

Nickel und Nickel based Alloys

Nickel is resistant to a number of corroding media such as halogenides, caustic alkalines and many organic compounds. It shows good magnetic-, electrical- and heat conducting properties. Woven wire cloth made from a nickel based alloy is produced to meet certain criteria. Special alloy constituents combine a high corrosion resistance to acids and lyes with temperature resistance. Alloy 59 offers a large application field in alkalines and acids.

Titanium and Aluminium based Alloys

Aluminium is a very soft and light material with good corrosion resistance. As for the austenitic materials the corrosion resistance results from a passivation coating that is formed in the air. ALMg3 and ALMg5 are alloyed with magnesium and have a higher tensile strength than highgrade aluminium (coat). Titanium is a material with very good corrosion resistance to a number of aggressive media. It is used in the air-, space- and medical industries. The excellent relation ship between tensile strength and density is comparable to austenitic materials.

Material No.				Alloy (Composition	Unalloyed S (Melt Analysis		ge per Ma	SS				
EN 10016	Short Term	С	Si	Mn	Fe	Cr	Cu	Мо	Ni	Others			
1.0300	C4D	≤ 0.06	≤ 0.30	0.3-0.6	Rest	≤ 0.20	≤ 0.30	≤ 0.05	≤ 0.25	Al ≤ 0.01			
1.0304	C9D	≤ 0.10	≤ 0.30	≤ 0,60	Rest	≤ 0.20	≤ 0.35	≤ 0.08	≤ 0.25	-			
1.0586	C50D NIA	0.48-0.53	0.1-0.3	0.5-0.8	Rest	≤ 0.15	≤ 0.25	≤ 0.05	≤ 0.20	Al ≤ 0.01			
Materi	al No.	Ferritic Stainless Steel Alloy Composition (Melt Analysis) – Percentage per Mass											
EN 10088	AISI ⁽¹⁾	С	Si	Mn	N	Cr	Cu	Мо	Ni	Others			
1.4016	430	≤ 0.08	≤ 1.0	≤ 1.0	_	15.5-17.5	-	-	-	_			
Materi	al No.		Martensitic and Precipitation-hardening Stainless Steel Alloy Composition (Melt Analysis) – Percentage per Mass										
EN 10088	AISI ⁽¹⁾	С	Si	Mn	N	Cr	Cu	Мо	Ni	Others			
1.4006	410	0.03-0.12	≤ 1.0	≤ 1.0	_	12.0-14.0	-	-	_	-			
1.4034	-	0.43-0.50	≤ 1.0	≤ 1.0	-	12.5-14.5	-	-	_	-			
Materi	al No.		Austenitic Stainless Steel Alloy Composition (Melt Analysis) – Percentage per Mass										
EN 10088	AISI ⁽¹⁾	С	Si	Mn	N	Cr	Cu	Мо	Ni	Others			
1.4301	304	≤ 0.07	≤ 1.0	≤ 2.0	≤ 0.11	17.5-19.5	-	_	8.0-10.5	_			
1.4306	304L	≤ 0.03	≤ 1.0	≤ 2.0	≤ 0.11	18.0-20.0	-	_	10.0-12.0	-			
1.4310	301	0.05-0.15	≤ 2.0	≤ 2.0	≤ 0.11	16.0-19.0	-	≤ 0.8	6.0-9.5	_			
1.4401	316	≤ 0.07	≤ 1.0	≤ 2.0	≤ 0.11	16.5-18.5	-	2.0-2.5	10.0-13.0	_			
1.4404	316L	≤ 0.03	≤ 1.0	≤ 2.0	≤ 0.11	16.5-18.5	-	2.0-2.5	10.0-13.0	-			
1.4435		≤ 0.03	≤ 1.0	≤ 2.0	≤ 0.11	17.0-19.0	-	2.0-3.0	12.5-15.0	-			
1.4439	317LN	≤ 0.03	≤ 1.0	≤ 2.0	0.12-0.22	16.5-18.5	-	4.0-5.0	12.5-14.5	-			
1.4539	904L	≤ 0.02	≤ 0.7	≤ 2.0	≤ 0.15	19.0-21.0	1.20-2.00	4.0-5.0	24.0-26.0	-			
1.4571	316 Ti	≤ 0.08	≤ 1.0	≤ 2.0	-	16.5-18.5	-	2.0-2.5	10.0-13.0	Ti = 5 X C to 0.7			
Materi	al No.	Austenitic-Ferritic Stainless Steel Alloy Composition (Melt Analysis) – Percentage per Mass											
EN 10088	AISI ⁽¹⁾	С	Si	Mn	N	Cr	Cu	Мо	Ni	Others			
1.4462	318LN	≤ 0.03	≤ 1.0	≤ 2.0	0.10-0.22	21.0-23.0	-	2.5-3.5	4.50-6.50	-			
Material No.	Norm				-	Steel and He a (Melt Analysis			SS				
		С	Si	Mn	N	Cr	Cu	Fe	Ni	Others			
1.4742(2)	DIN 43720	≤ 0.12	0.7-1.4	≤ 1.0	_	17.0-19.0	-	_	-	Al = 0.7-1.2			
1.4841(2)	DIN 43720	≤ 0.20	1.5-2.5	≤ 2.0	≤ 0.11	24.0-26.0	-	_	19.0-22.0	_			
1.4864(2)	AISI 330	≤ 0.08	0.75-1.50	≤ 2.0	-	17.0-20.0	-	_	34.0-37.0	-			
1.4893(2)	-	≤ 0.10	1.7	-	0.17	21.0	-	_	11.0	Ce = 0.05			
1.4725 ⁽³⁾	DIN 17470	≤ 0.10	≤ 0.5	≤ 1.0	_	13.0-15.0	-	-	_	Al = 3.5-5.0			
1.4765 ⁽³⁾	DIN 17470	≤ 0.10	≤ 1.0	≤ 0.6	-	22.0-25.0	-	_	_	Al = 4.5-6.0			
1.4767 ⁽³⁾	DIN 17470	≤ 0.10	≤ 1.0	≤ 1.0	_	19.0-22.0	-	-	_	Al = 4.0-5.5			
2.4869(3)	DIN 17470	≤ 0.15	0.5-2.0	≤ 1.0	-	19.0-21.0	≤ 0.5	≤ 1.0	≥ 75.0	Al ≤ 0.30			

Parts of the melt analysis do not correspond to EN 10088-3:08-1999. The given AISI-designations are general recommondations.
 Heat conducting alloys
 Brands or registered trade names
 1 = resistant; 2 = largely resistant; 3 = resistant with some conditions; 4 = little resistant; 5 = poor resistant
 At the atmosphere (round values)

Material No.	Density		Resi	stance ⁽⁵⁾		Tensile Strength	Heat Conducting Capacity	Electrical Resistance
EN 10016	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	W / K m	Ω mm²/m
1.0300	7.85	5	5	2-4	4-5	250-450	81	0.13
1.0304	7.85	5	5	2-4	4-5	300-500	-	-
1.0586	7.85	5	5	2-4	4-5	1000-2000	-	-
Material No.	Density		Resi	stance ⁽⁵⁾	1	Tensile Strength	Heat Conducting Capacity	Electrical Resistance
EN 10088	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	W / K m	Ω mm²/m
1.4016	7.70	2	4	2	3	450-600		
Material No.	Density		Resi	stance ⁽⁵⁾		Tensile Strength	Heat Conducting Capacity	Electrical Resistance
EN 10088	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	W / K m	Ω mm ² /m
1.4006	7.70	2	4	2	3-4	450-600	30	0.60
1.4034	7.70	2	4	2	3	450-800	30	0.55
Material No.	Density		Resi	stance ⁵⁾		Tensile Strength	Heat Conducting Capacity	Temperature- Resistance
EN 10088	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	W / K m	°C
1.4301	7.90	1	3	1-2	2-4	500-700	15	450
1.4306	7.90	1	3	1-2	2-4	460-680	15	450
1.4310	7.90	1	3	2	2-4	750-900	15	450
1.4401	7.90	1	2-3	2	2-3	550-710	15	450
1.4404	7.90	1	2-3	2	2-3	490-690	15	450
1.4435	8.00	1	2-3	2	2-3	490-690	15	450
1.4439	8.00	1	1	1-3	2	580-800	14	450
1.4539	8.00	1	1	2	2-3	520-720	12	500
1.4571	8.00	1	1	2	2-3	500-730	19	500
Material No.	Density		Resi	stance ⁽⁵⁾	1	Tensile Strength	Heat Conducting Capacity	Electrical Resistance
EN 10088	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	W / K m	Ω mm²/m
1.4462	7.80	1	1	2-4	2-4	680-880	15	0.8
Material No.	Density		Resi	stance ⁽⁵⁾	1	Tensile Strength	Maxin Application T	
	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	°C	°F
1.4742(2)	7.70	1	4	2-5	2-5	500-700	1000	1830
1.4841(2)	7.90	1	3	2-3	2-4	550-800	1150	2100
1.4864(2)	8.00	1	2-3	2-3	3	550-800	1100	2010
1.4893(2)	7.80	1	2	1-2	2-3	650-850	1150	2100
1.4725(3)	7.30	1	4	2-3	2-4	600-800	1000	1830
1.4765(3)	7.10	1	3-4	2-3	2-4	600-800	1300	2370
1.4767(3)	7.20	1	3-4	2-3	2-4	600-800	1200	2190
2.4869 ⁽³⁾	8.30	1	4	2-3	2-4	650-850	1200	2190

Material No.	Standard	Short Terms	Copper and Copper based Alloys Alloy Composition (Melt Analysis) – Percentage in %									
			Fe	Ni	Pb	Al	Cu	Zn	Sn	Others		
2.0065	DIN EN 1412	E-Cu58	_	-	-	-	≥ 99.9	-	-	O = 0.005-0.04		
2.0040	DIN EN 1412	OF-Cu	-	-	-	-	≥ 99.99	-	-	_		
2.0321	DIN 17660	CuZn37	≤ 0.10	≤ 0.3	≤ 0.10	≤ 0.03	62.0-64.0	Rest	≤ 0.10	_		
2.0250	DIN 17660	CuZn20	≤ 0.05	≤ 0.2	≤ 0.05	≤ 0.02	79.0-81.0	Rest	≤ 0.05	_		
2.1020	DIN 17662	CuSn6	≤ 0.1	≤ 0.3	≤ 0.05	-	Rest	≤ 0.3	5.5-7.0	≤ 0.2		
2.0872	DIN 17664	CuNi 90/10	1.3-1.8	10.0-11.0	-	-	Rest	-	-	C ≤ 0.05; Mn 0.5-1.0		

Material No.	Standard	Allo	у ⁽⁴⁾									
				С	Si	Mn	Cr	Cu	Mo	Ni	Others	
2.4060	DIN 17740	20	0	≤ 0.08	≤ 0.10	≤ 0.3	-	≤ 0.10	-	≥ 99.6	MG ≤ 0.15; Ti ≤ 0.1; Fe ≤ 0.2	
2.4066	DIN 17740	20	0	≤ 0.08	≤ 0.10	≤ 0.3	-	≤ 0.25	-	≥ 99.2	Mg ≤ 0.15; Ti ≤ 0.1; Fe ≤ 0.4	
2.4360	DIN 17743	40	0	≤ 0.15	≤ 0.5	≤ 2.0	-	28.0-34.0	-	≥ 63.0	Al ≤ 0.50; Ti ≤ 0.3; Fe 1.0-2.5	
2.4602	N 06022	C2	2	≤ 0.01	≤ 0.08	≤ 0.5	20.0-22.5	-	12.5-14.5	Rest/Bal.	V≤ 0.35; W 2.5-3.5; Co ≤ 2.5; Fe 2.0-6.0	
2.4605	N 06059	59	7	≤ 0.01	≤ 0.10	≤ 0.5	22.0-24.0	-	15.0-16.5	Rest/Bal.	Co ≤ 0.3; Fe ≤ 1.5; Al 0.1-0.4	
2.4610	DIN 17744	C4	4	≤ 0.01	≤ 0.08	≤ 1.0	14.0-18.0	≤ 0.50	14.0-18.0	Rest/Bal.	$\label{eq:constraint} \begin{array}{l} \mbox{Co} \leq 2.0; \mbox{ Fe} \leq 3.0; \\ \mbox{Ti} \leq 0.7 \end{array}$	
2.4816	DIN 17742	60	0	≤ 0.01	≤ 0.5	≤ 1.0	14.0-17.0	≤ 0.50	-	≥ 72.0	Ti ≤ 0.3; B ≤ 0.006; Fe 6.0-10.0	
2.4819	DIN 17744	C27	76	≤ 0.015	≤ 0.08	≤ 1.0	14.5-16.5	≤ 0.50	-	Rest/Bal.	Co ≤ 2.5; Fe 4.0-7.0; W 3.0-4.5	
2.4851	DIN 17742	60	1	≤ 0.10	≤ 0.5	≤ 1.0	21.0-25.0	≤ 0.50	-	58.0-63.0	Al 1.0-1.7; Bi ≤ 0.006; Fe ≤ 18.0	
2.4858	DIN 17744 825		5	≤ 0.025	≤ 0.5	≤ 1.0	19.5-23.5	1.5-3.0	2.5-3.5	38.0-46.0	Ti 0.6-1.2; Al ≤ 0.2; Fe Rest/Bal.; Co ≤ 1.0	
Material Standard Short Term No. (Int. Alloy Reg. No.)				.)	Titan- and Aluminium based Alloys Alloy Composition (Melt Analysis) – Percentage in %							

No.		(Int. Alloy Reg. No.)	Alloy Composition (Melt Analysis) – Percentage in %							
			Fe	Si	Mn	Al	Mg	Ti	Zn	Cu
3.0205	DIN 1712	A199	Fe + Si \leq 1.0		≤ 0.05	≥ 99	≤ 0.05	≤ 0.05	≤ 0.10	≤ 0.05
3.3535	DIN 1725	AlMg3 (5754)	0.40	0.40	-	Rest	2.6-3.6	0.15	0.20	0.10
3.3555	DIN 1725	AlMg5 (5056A)	0.40	0.50	0.10-0.60	Rest	4.5-5.4	0.20	0,20	0.10
			Fe	0	N	Н	С	Ti	Zn	Others
3.7025	DIN 17850	Ti1	≤ 0.15	≤ 0.12	≤ 0.05	≤ 0.013	≤ 0.06	Rest	_	≤ 0.4
3.7035	DIN 17850	Ti2	≤ 0.20	≤ 0.18	≤ 0.05	≤ 0.013	≤ 0.06	Rest	_	≤ 0.4

Parts of the melt analysis do not correspond to EN 10088-3:08-1999. The given AISI-designations are general recommondations.
 Heat resisting steels
 Heat conducting alloys
 Brands or registered trade names
 1 = resistant; 2 = largely resistant; 3 = resistant with some conditions; 4 = little resistant; 5 = poor resistant
 At the atmosphere (round values)


Material No.	Density		Resi	stance ⁵⁾		Tensile Strength	Heat Conducting Capacity	Electrical Resistance
	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	W / K m	Ω mm²/m
2.0065	8.94	1	2	1-3	3-5	200-250	393	0,017
2.0040	8.94	1	2	1-3	3-5	200-300	393	0,017
2.0321	8.44	5	5	3	4-5	490-590	120	0,067
2.0250	8.70	4	4	2	2-5	450-550	142	0,053
2.1020	8.82	1	2	3	2-5	480-650	75	0,111
2.0872	8.90	1	1	1-5	2-5	300-400	59	0,150
Material No.	Density		Resi	stance ⁽⁵⁾	1	Tensile Strength	Heat Conducting Capacity	Electrical Resistance
	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	W / K m	Ω mm²/m
2.4060	8.40	1	2	1-3	3-5	340-440	79	0.095
2.4066	8.40	1	2-3	1-2	3-5	370-470	71	0.090
2.4360	8.80	1	1	2-3	1-5	450-550	26	0.513
2.4602	8.70	1	1	1-2	1-2	690-890	9	0.114
2.4605	8.50	1	1	1-2	1-2	690-890	10	0.125
2.4610	8.60	1	1	1-3	1-3	700-900	10	0.124
2.4816	8.40	1	2-3	1-2	2-5	550-750	15	0.103
2.4819	8.70	1	1	1-3	1-3	750-950	11	0.125
2.4851	8.10	1	2-3	1-3	1-5	650-850	11	0.119
2.4858	8.10	1	1	1-3	1-2	550-750	11	0.112
Material No.	Density		Resi	stance ⁽⁵⁾		Tensile Strength	Heat Conducting Capacity	Electrical Resistance
	kg/dm³	Atmosphere	Seawater	Lyes	Acids	MPa	W / K m	Ω mm²/m
3.0205	2.70	2-3	4	4-5	3-5	75-140	204	0.028
3.3535	2.66	2-3	4	4-5	3-5	230-260	140	0.050
3.3555	2.64	2-3	4	4-5	3-5	310-340	116	0.061
3.7025	4.50	2	1-2	3-5	1-4	290-340	17	0.500
3.7035	4.50	2	1-2	3-5	1-4	390-440	17	0.500

(1) Parts of the melt analysis do not correspond to EN 10088-3:08-1999. The given AISI-designations are general recommondations.
(2) Heat resisting steels
(3) Heat conducting alloys
(4) Brands or registered trade names
(5) 1 = resistant; 2 = largely resistant; 3 = resistant with some conditions; 4 = little resistant; 5 = poor resistant
(6) At the atmosphere (round values)

PRICE INDEXES FOR WEAVING WIRES (LIN.M) ISO 4782 BASE $1.4301 = 100 \cdot PRICES IN EURO / KG, 2011$

Material No.	Material	Diameter in mm					
		0.8	0.4	0.2	0.1	0.05	0.025
1.0304	C9D	40	42	53	116	-	-
1.0586	C50D HAVER NIA-Steel	34	36	47	_	_	_
1.4016	AISI 430	80	86	90	102	142	_
1.4034		155	159	152	183	_	_
1.4301	AISI 304	100	100	100	100	100	100
1.4306	AISI 304L	105	105	104	103	101	100
1.4310	AISI 301	112	116	117	137	118	132
1.4401	AISI 316	131	131	122	116	113	102
1.4404	AISI 316L	131	131	122	116	113	102
1.4539	AISI 904L	267	259	246	259	266	_
1.4571	AISI 316 Ti	143	147	149	205	455	_
1.4841	DIN 43720	169	171	170	189	174	_
1.4864	AISI 330	391	378	333	300	211	-
1.4725	DIN 17470	139	142	_	_	-	-
1.4767	DIN 17470	328	328	310	280	322	-
2.4869	DIN 17470	961	946	946	843	630	342
2.0065	DIN 1708	197	193	182	143	152	203
2.0321	DIN 17660	168	167	152	119	116	-
2.1020	DIN 17662	233	231	207	161	137	171
2.4066	DIN 17740	503	515	429	289	180	-
2.4360	DIN 17743	452	466	373	256	165	-
2.4602	N 06022	1378	1439	1563	1317	1010	793
2.4605	N 06059	795	785	715	1450	1143	801
2.4610	DIN 17744	830	818	744	1459	1165	790
2.4816	DIN 17742	437	451	435	556	412	-
2.4819	DIN 17744	673	672	622	1630	1125	817
3.0205	DIN 1712	29	30	47	84	_	-
3.3555	DIN 1725	31	36	77	_	84	-
3.7025	DIN 17650	1786	2640	3341	_	_	-

NO SITE IS OUT OF SIGHT.

Haver & Boecker has actively influenced the technology of wire weaving since its beginning. As a result of our successful company history, today we are able to offer our customers the benefit of our unrivalled experience, technology and know-how about wire cloth.

Whether science or research, industry or architecture - wherever Haver & Boecker wire cloth is used, our customers benefit from a broad but still unique individual service. With our worldwide weaving network we offer the comforting certainty to be your competent and reliable partner at any time and any place. So as to continue weaving ideas in time to come.

In 2012 Haver & Boecker operates production sites in Germany, Great Britain, Belgium, the USA, Canada and Brazil. More than 2,300 people work for the Group worldwide.

Belgium: HAVER BELGIUM S.A.

Rue des Gaillettes 9 B-4651 BATTICE Téléphone: 087-69 29 60 Fax: 087-69 29 61 E-Mail: hbsa@cybernet.be Internet: www.haverbelgium.com

France:

HAVER & BOECKER

Toiles Métalliques 7, Rue Sainte Catherine F-24100 BERGERAC Téléphone: 5-53 24 93 13 Fax: 5-53 24 95 99 E-Mail: haver.toiles@wanadoo.fr Internet: www.les-tissus-metalliques.com

Spain:

HAVER & BOECKER Telas Metalicas Avda. Les Bobiles, 7 Casa 2 E-08850 GAVA (Barcelona) Teléfono: 93-6 62 63 55 Fax: 93-6 62 90 59 E-Mail: haverboecker@telefonica.net Internet: www.telas-metalicas.com

Internet: www.weavingideas.com

Great Britain: H&B Wire Fabrications Ltd. 30-32 Tatton Court Kingsland Grange, Woolston GB-WARRINGTON, Cheshire WA1 4RR Phone: 01925-81 95 15 Fax: 01925-83 17 73 E-Mail: sales@hbwf.co.uk Internet: www.hbwf.co.uk

U.S.A.:

W.S. TYLER – Industrial Group 8570 Tyler Boulevard USA-MENTOR, Ohio 44060 Phone: 440-974-1047 + 800-321-6188 Fax: 440-974-0921 E-Mail: wstyler@wstyler.com Internet: www.wstyler.com

Canada:

W.S. TYLER CANADA LTD.

225 Ontario Street CAN-ST. CATHARINES, Ontario L2R 7B6 Phone: 905-688-2644 + 800-325-5993 Fax: 905-688-4733 E-Mail: wstsales@wstyler.on.ca Internet: www.wstyler.on.ca

HAVER & BOECKER · Ennigerloher Straße 64 · 59302 OELDE · Germany Phone: +49 (0) 2522 30-0 · Fax: +49 (0) 2522 30-404 E-Mail: dw@haverboecker.com